# Synthesis and spectroscopic studies (Mössbauer, IR and NMR) of $\left[\mathrm{R}_{2} \mathrm{SnCl}_{2}\right.$ bipym ] ( $\mathrm{R}=$ butyl or phenyl) and the crystal and molecular structure of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$ 

F. Caruso<br>Istituto di Strutturistica Chimica "G. Giacomello", CNR, C.P.10, Monterotondo Stazione, 00016 Roma (Italy)

## M. Giomini

Dipartimento di Chimica, Università "La Sapienza", Piazzale A. Moro 5, 00185 Roma (Italy)

A.M. Giuliani and E. Rivarola<br>Dipartimento di Chimica Inorganica, Università di Palermo, Via Archirafi 26, 90123 Palermo (Italy)

(Received July 2, 1993)


#### Abstract

The complexes $\left[\mathrm{R}_{2} \mathrm{SnCl}_{2}\right.$ bipym ( $\mathrm{R}=$ phenyl or butyl, bipym $=2,2^{\prime}, 6,6^{\prime}$-bipyrimidine) were synthesized and studied in solution by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy and in the solid state by IR and Mössbauer spectroscopy. The latter was also performed in frozen ethanolic solution. The structure of the phenyl complex was determined by single crystal diffraction methods.

The value obtained for the angle $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ in the phenyl compound is $169.3(2)^{\circ}$ ( X -ray) and $151^{\circ}$ (Mössbauer), but the assignment of an octahedral configuration by Mössbauer spectroscopy is consistent with the structure determined by diffraction. The butyl complex is also octahedral and the two techniques show better agreement. The value of the $\mathbf{C - S n - C}$ angle is $171^{\circ}$ (Mössbauer in the solid state), $163^{\circ}$ (Mössbauer in frozen solution) and $175.1(6)^{\circ}$ (X-ray).

The NMR coupling constant, ${ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$, was also used to estimate the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle. The ${ }^{13} \mathrm{C}$-NMR spectrum for the butyl complex is markedly concentration-dependent. At the highest concentration, this angle is $138^{\circ}$ (Lockhart) and $145^{\circ}$ (Holeček); for less concentrated samples the angle tends to decrease. This suggests that the coordination number of tin in solution is less than six.


Key words: Tin; Mössbauer spectroscopy; Nuclear magnetic resonance; Crystal structure

## 1. Introduction

The established use of cisplatin in cancer chemotherapy [1-4] has led other metal complexes to be investigated as potential anticancer agents and organotin compounds have shown promising activity. Since the first report on the antitumor activity of diorganotins appeared in 1980 [5], over 2000 tin compounds have been tested by NCI [3] - more than of any other element.

Diorganotin(IV) compounds $\mathrm{R}_{2} \mathrm{SnX}_{2}(\mathrm{X}=$ anion) are tetrahedral and with appropriate nitrogen chelating ligands form octahedral complexes [6,7] which resemble the active Pt complexes mentioned above.

[^0]Diorganotin complexes have no biological activity if they are stable and have $\mathrm{Sn}-\mathrm{N}$ bonds of less than 2.39 $\AA$. This suggests that activity is connected with dissociation of the nitrogen ligand as part of the mechanism of action [8].

Most of the active Sn compounds are effective against lymphocytic leukaemia but are less active in the successive steps of the NCI protocols. Diorganotins are the most active, followed by triorganotins. The presence of aromatic nitrogen atoms and phenyl or ethyl groups bound to tin correlates with greater activity [3].

It has been shown recently that a tetraorganotin with easily cleaved $\mathrm{Sn}-\mathrm{C}$ bond is active against four tumour cell lines giving $\mathrm{R}_{2} \mathrm{Sn}^{2+}$ or $\mathrm{R}_{3} \mathrm{Sn}^{+}$as the biologically active species [9]. This suggests a mechanism of anti-tumour action that is different from that

TABLE 1. Summary of crystal data and intensity collection for [ $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ bipym]

| Formula | $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Sn}$ |
| :--- | :--- |
| Formula weight | 501.972 |
| $a(\AA)$ | $9.024(2)$ |
| $b$ ( $\AA$ ) | $13.485(3)$ |
| $c(\AA)$ | $18.612(3)$ |
| $\alpha($ deg $)$ | 90 |
| $\beta$ (deg) | $118.60(2)$ |
| $\gamma$ (deg) | 90 |
| Volume (A ${ }^{3}$ ) | $1988(1)$ |
| Space group | $P 2_{1} / c$ |
| $Z$ | 4 |
| Crystal dimensions (mm) | $0.25 \times 0.20 \times 0.15$ |
| Density calcd. (g. cm ${ }^{-3}$ ) | 1.677 |
| Temperature | 298 K |
| F(000) | 992.0 |
| $\mu$ | 15.729 |
| Radiation | $M o$ |
| Data collection mode | $2 \theta-\theta$ |
| Scan speed (deg/min) | 1.9 |
| Scan range (deg) | $0.8,0.8$ |
| Background counts | $1 / 4$ of scan time at the end |
|  | of scan range |
| $2 \theta$ range (deg) | $3-56$ |
| Reflections collected | 4474 |
| Reflections used, $I>3 \sigma(I)$ | 3678 |
| Final no. variables | 144 |
| $R_{f}, R_{w}$ | $0.047,0.050$ |

accepted for Pt complexes where the $\mathrm{Pt}-\mathrm{N}$ bonds are believed to be retained after interaction with DNA [10].

We report two tin complexes, $\left[\mathrm{R}_{2} \mathrm{SnCl}_{2}\right.$ bipym] ( $\mathrm{R}=$ phenyl or butyl, bipym $=2,2^{\prime}, 6,6^{\prime}$-bipyrimidine) synthesized and characterized by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy in solution. These were also studied in the solid state by IR and Mössbauer spectroscopy, which was also performed in frozen solution. The molecular structure of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym] was determined by X-ray crystallography and is discussed along with the structure of the butyl complex previously reported [11]. Bipym, which complexes other metals [12], can be bidentate at a single metal atom or it can bridge two
metal atoms. We used it in order to obtain heterobimetallic organotin derivatives.

## 2. Experimental details

### 2.1. Materials and methods

$\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ was a gift from Schering AG (Bergkamen, Germany) and was recrystallized from benzene. $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ was purchased from Fluka (Zurich, Switzerland) and used as received. 2,2',6,6'-Bipyrimidine was purchased from Ventron-Alfa Inorganics (Beverly, USA) and recrystallized from ethanol. Deuterated chloroform was a Merck UVASOL (Darmstadt, Germany) reagent ( $>99.9 \%$ deuteration).

The Mössbauer spectra were determined with apparatus and procedures described elsewhere [13], at liq-uid-nitrogen temperature, with a $\mathrm{Ca}^{119} \mathrm{SnO}_{3}$ source, either as solids or as quickly frozen solutions.

IR spectra were obtained using a Perkin-Elmer 983 IR spectrometer in the $4000-200 \mathrm{~cm}^{-1}$ region in Nujol or hexachlorobutadiene mulls between CsI disks.

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded either on an $\mathrm{AC} 200\left(\mathrm{~B}_{\mathrm{o}}=4.7 \mathrm{~T}\right)$ or on an AM400 ( $\mathrm{B}_{\mathrm{o}}=9.4$ T) Bruker spectrometer. The deuterium signal of the chloroform solvent was used for field-frequency lock. Chemical shifts are relative to TMS; the spectra were acquircd at room temperature ( 298 K ) unless otherwise specified; ${ }^{13} \mathrm{C}$ spectra are broadband proton decoupled.

A Nicolet R3 automatic diffractometer was used for the measurement of the cell constants and the data collection.

A summary of crystal data together with details of data collection is given in Table 1 . Monitoring of four standard reflections ( $[1,1,0],[-1,-1,0],[1,1,-1]$ and [ $-1,-1,1]$ ) taken every 100 reflections indicated no decay. A $\psi$-scan of the reflection $[1,1,-4]$, which has the $\chi$ angle close to $90^{\circ}$, showed a weak absorption of about $10 \%$. Therefore no correction for absorption was applied. Data were corrected for Lorentz and polarization effects. The structure was solved using the Patterson function to determine the positions of Sn and Cl

TABLE 2. Analytical and Mössbauer data

| Compound | M.p. $\left({ }^{\circ} \mathrm{C}\right)$ | C\% | H\% | N\% | I.S. $\mathrm{mm} / \mathrm{s}$ | $\begin{aligned} & \hline \text { Q.S. } \\ & \mathrm{mm} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & \Gamma \pm \\ & \mathrm{mm} / \mathrm{s} \end{aligned}$ | $C-S n-C$ <br> exp. <br> (calcd.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | found (calcd.) |  |  |  |  |  |  |
| [ $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ bipym] | 104-107 | 41.54 | 5.32 | 12.29 | 1.58 | 4.10 | 0.89 | 175 |
|  |  | (41.62) | (5.24) | (12.14) |  |  |  | (171) |
|  |  |  |  |  | $1.50{ }^{\text {a }}$ | $3.98{ }^{\text {a }}$ | $0.85{ }^{\text {a }}$ | $(163){ }^{\text {a }}$ |
| [ $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ bipym] | 207 | 47.84 | 3.15 | 11.13 | 1.23 | 3.43 | 0.93 | 169 |
|  |  | (47.89) | (3.21) | (11.16) |  |  |  | (151) |

${ }^{\text {a }}$ Frozen ethanol solution.
atoms, and Fourier methods to locate the other non-H atoms. Refinement by least-square procedures was applied subsequently. The minimized function $\Sigma \omega$ $\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ had the weighting scheme $\omega=\mathrm{a}+F_{\mathrm{o}}+$ $\mathrm{c} F_{\mathrm{o}}^{2}$ where a and c are of the order of $2 F_{\mathrm{o}}$ (min) and $2 / F_{\text {o }}$ (max) [14]. Hydrogen atoms were introduced at fixed positions, $\mathrm{C}-\mathrm{H}$ distance $=0.96 \AA$ and $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angle $=120^{\circ}$. Only the metal and atoms bound to the metal were refined anisotropically. The calculations were performed on a VAX 3300 using the caos program [15]. Atomic scattering factors and anomalous dispersion terms were taken from the International Tables for X-ray Crystallography.

### 2.2. Synthesis of the compounds

The adducts were obtained as white solids by mixing hot cyclohexane solutions of the reagents in equimolar amounts, and were recrystallized from a 1:1 dichloromethane-cyclohexane mixture. Analytical data are reported in Table 2.

### 2.3. IR and Mössbauer data

The significant bands are listed below ( $s=$ strong; $\mathrm{m}=$ medium; $\mathbf{w}=$ weak; $\mathrm{b}=$ broad; $\mathrm{v}=$ very). Some reasonable assignments are in parentheses, while absorptions due to the bipym are in italics.
[ $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ bipym]: 3050-2900 groups of bands; $1587 \mathrm{~m} ; 1569 \mathrm{vs} ; 1554 \mathrm{~m}, \mathrm{~s} ; 1545 \mathrm{~s} ; 1477 \mathrm{~m} ; 1428 \mathrm{~s} ; 1405 \mathrm{vs}$; 1308w; 1296w; 1263m; 1241m; 1206m; 1183w; 1158w; $1140 \mathrm{~m} ; 1101 \mathrm{w} ; 1065 \mathrm{~m} ; 1018 \mathrm{~m} ; 1012 \mathrm{~m} ; 1006 \mathrm{~s} ; 997 \mathrm{~m} ;$ $816 \mathrm{~m} ; 786 \mathrm{~m} ; 760 \mathrm{~s} ; 745 \mathrm{vs} ; 735 \mathrm{~s} ; 679 \mathrm{~m}, \mathrm{~s} ; 688 \mathrm{~m} ; 650 \mathrm{~s} ;$ $470 \mathrm{~m}, \mathrm{~s} ; 458 \mathrm{~m} ; 278 \mathrm{~s}, \mathrm{~b} \quad \nu(\mathrm{Sn}-\mathrm{Cl})_{\mathrm{as}}+\nu(\mathrm{Sn}-\mathrm{Ph})_{\mathrm{as}} ; 225 \mathrm{~s}$ $\nu(\mathrm{Sn}-\mathrm{Cl})_{\mathrm{s}}$.
[ $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ bipym]: 3080-2900, groups of bands; $1589 m ; 1569 s ; 1552 s ; 1407 s$; 1333w; 1295w; 1263m; $1241 \mathrm{~m} ; 1206 \mathrm{w} ; 1182 \mathrm{ww} ; 1154 \mathrm{~m} ; 1140 \mathrm{~m}$; 1114w; 1100m; 1078m; 1005s; 886w; 874m; 818m; 807w; 784w; 761s; $678 \mathrm{~s} ; 651 \mathrm{~s} ; 621 \mathrm{w} \nu(\mathrm{Sn}-\mathrm{C})_{\mathrm{as}} ; 578 \mathrm{vw} \nu(\mathrm{Sn}-\mathrm{C})_{\mathrm{s}} ; 244 \mathrm{~s}$ $\nu(\mathrm{Sn}-\mathrm{Cl})$ as .

The Mössbauer parameters are shown in Table 2.

### 2.4. Diffraction study of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym]

Atomic coordinates are given in Table 3. Figure 1 shows a computer generated drawing of the compound. The bipym is well adapted for cis coordination in an octahedral system, as found in this complex. The coordination sphere is completed by two trans phenyl and two cis chloro groups. Some distortion of the octahedron is observed. Thus, the angle $\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(7)$ is $169.3(2)^{\circ}$, and the other two trans bond angles $\mathrm{Cl}(1)-$ $\mathrm{Sn}-\mathrm{N}(2 \mathrm{~B})$ and $\mathrm{Cl}(2)-\mathrm{Sn}-\mathrm{N}(2 \mathrm{~A})$ are $163.6(1)$ and $160.4(1)^{\circ}$, respectively. The five-atom ring $\mathrm{Sn}-\mathrm{N}(2 \mathrm{~A})-$ $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$ produces a small bite angle $\mathrm{N}(2 \mathrm{~A})-\mathrm{Sn}-\mathrm{N}(2 \mathrm{~B})$ of $67.9(1)^{\circ}$. These five atoms lie in a

TABLE 3. Atomic coordinates (e.s.d.'s in parentheses) for [ $\mathrm{Ph}_{2} \mathrm{SnCl}_{2} \mathrm{bipym}$ ]

|  | $x$ | $y$ | $z$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Sn}(1)$ | $0.24532(4)$ | $0.36597(2)$ | $0.22748(2)$ |
| $\mathrm{Cl}(1)$ | $0.2770(2)$ | $0.4780(1)$ | $0.1310(1)$ |
| $\mathrm{Cl}(2)$ | $0.2105(2)$ | $0.2019(1)$ | $0.1647(1)$ |
| $\mathrm{N}(2 \mathrm{~A})$ | $0.2645(5)$ | $0.4933(3)$ | $0.3215(2)$ |
| $\mathrm{N}(6 \mathrm{~A})$ | $0.2901(6)$ | $0.5289(4)$ | $0.4516(3)$ |
| $\mathrm{N}(2 \mathrm{~B})$ | $0.2277(5)$ | $0.2998(3)$ | $0.3436(2)$ |
| $\mathrm{N}(6 \mathrm{~B})$ | $0.2977(6)$ | $0.3303(4)$ | $0.4814(3)$ |
| $\mathrm{C}(1)$ | $0.5120(6)$ | $0.3534(4)$ | $0.3050(3)$ |
| $\mathrm{C}(2)$ | $0.6114(7)$ | $0.4389(4)$ | $0.3355(3)$ |
| $\mathrm{C}(3)$ | $0.7811(8)$ | $0.4327(5)$ | $0.3893(4)$ |
| $\mathrm{C}(4)$ | $0.8565(9)$ | $0.3413(5)$ | $0.4139(4)$ |
| $\mathrm{C}(5)$ | $0.7634(8)$ | $0.2572(5)$ | $0.3838(4)$ |
| $\mathrm{C}(6)$ | $0.5918(7)$ | $0.2626(4)$ | $0.3298(3)$ |
| $\mathrm{C}(7)$ | $-0.0212(6)$ | $0.3918(3)$ | $0.1691(3)$ |
| $\mathrm{C}(8)$ | $-0.1078(7)$ | $0.4187(4)$ | $0.2114(3)$ |
| $\mathrm{C}(9)$ | $-0.2807(7)$ | $0.4343(4)$ | $0.1711(3)$ |
| $\mathrm{C}(10)$ | $-0.3691(7)$ | $0.4236(4)$ | $0.0872(3)$ |
| $\mathrm{C}(11)$ | $-0.2863(7)$ | $0.3964(4)$ | $0.0441(3)$ |
| $\mathrm{C}(12)$ | $-0.1149(6)$ | $0.3812(4)$ | $0.0845(3)$ |
| $\mathrm{C}(1 \mathrm{~A})$ | $0.2778(6)$ | $0.4667(4)$ | $0.3937(3)$ |
| $\mathrm{C}(3 \mathrm{~A})$ | $0.2612(7)$ | $0.5909(4)$ | $0.3068(3)$ |
| $\mathrm{C}(4 \mathrm{~A})$ | $0.2719(9)$ | $0.6604(5)$ | $0.3630(4)$ |
| $\mathrm{C}(5 \mathrm{~A})$ | $0.2890(9)$ | $0.6251(5)$ | $0.4352(4)$ |
| $\mathrm{C}(1 \mathrm{~B})$ | $0.2690(6)$ | $0.3593(4)$ | $0.4073(3)$ |
| $\mathrm{C}(3 \mathrm{~B})$ | $0.2003(7)$ | $0.2032(5)$ | $0.3519(4)$ |
| $\mathrm{C}(4 \mathrm{~B})$ | $0.2201(8)$ | $0.1696(5)$ | $0.4264(4)$ |
| $\mathrm{C}(5 \mathrm{~B})$ | $0.2715(8)$ | $0.2336(5)$ | $0.4890(4)$ |

plane, deviations are less than $0.09 \AA$. The small N-$\mathrm{Sn}-\mathrm{N}$ angle induces a large $\mathrm{Cl}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$ angle (103.81(5) ${ }^{\circ}$ ) so that the sum of the four bond angles in this plane is $360^{\circ}$. Bond distances and angles in the coordination sphere are shown in Table 4.


Fig. 1. Perspective view of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$.

TABLE 4. Bond distances ( $\AA$ ) and angles $\left(^{\circ}\right)$ in the coordination sphere of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$

| Distances |  |
| :--- | :---: |
| $\mathrm{Sn}(1)-\mathrm{Cl}(1)$ | $2.466(2)$ |
| $\mathrm{Sn}(1)-\mathrm{Cl}(2)$ | $2.451(2)$ |
| $\mathrm{Sn}(1)-\mathrm{C}(1)$ | $2.139(7)$ |
| $\mathrm{Sn}(1)-\mathrm{C}(7)$ | $2.141(7)$ |
| $\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~A})$ | $2.398(4)$ |
| $\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~B})$ | $2.413(4)$ |
| Angles |  |
| $\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{Cl}(1)$ | $103.81(5)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(7)$ | $169.3(2)$ |
| $\mathrm{N}(2 \mathrm{~A})-\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~B})$ | $67.9(1)$ |
| $\mathrm{N}(2 \mathrm{~A})-\mathrm{Sn}(1)-\mathrm{Cl}(1)$ | $95.8(1)$ |
| $\mathrm{N}(2 \mathrm{~A})-\mathrm{Sn}(1)-\mathrm{Cl}(2)$ | $160.4(1)$ |
| $\mathrm{N}(2 \mathrm{~B})-\mathrm{Sn}(1)-\mathrm{Cl}(1)$ | $163.6(1)$ |
| $\mathrm{N}(2 \mathrm{~B})-\mathrm{Sn}(1)-\mathrm{Cl}(2)$ | $92.6(1)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(1)$ | $93.1(1)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(2)$ | $95.5(1)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~A})$ | $84.2(2)$ |
| $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~B})$ | $84.4(2)$ |
| $\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{Cl}(1)$ | $91.4(1)$ |
| $\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{Cl}(2)$ | $92.8(1)$ |
| $\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~B})$ | $88.6(2)$ |
| $\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{N}(2 \mathrm{~A})$ | $85.7(2)$ |

### 2.5. NMR spectral results

The ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}$-NMR data of the complexes and those of related compounds, are reported in Tables 5 and 6 , respectively. The ${ }^{1} J\left({ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)$ values have been used to calculate the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle, $\theta$, making use of either the Lockhart [16,17] or the Holeček [18] equations.

## 3. Discussion

The 1:1 compositions (Table 2) are compatible with both monomeric and polymeric formulations, but X-ray data show that both compounds are monomeric in the solid state. The crystal structure of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym] reported here (Fig. 1) may be compared to that of [ $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ bipym] [11]. The $\mathrm{Sn}-\mathrm{C}$ bonds in the two complexes are equal, $2.139(7)$ and $2.141(7) \AA$ for the phenyl compound, and 2.14(1) and 2.14(1) $\AA$ for the butyl compound, but other bonds in the coordination sphere are significantly different. Thus, the equivalent bonds $\mathrm{Sn}-\mathrm{N}, 2.398(4)$ and $2.413(4) \AA$, for the phenyl species are shorter than 2.46 (1) and $2.472(9) \AA$ for the

TABLE 5. ${ }^{13} \mathrm{C}$-NMR data in chloroform- $d_{1}$ solution ( $\mathrm{B}_{\mathrm{o}}=4.7$ or $9.4 \mathrm{~T} ; T=298 \mathrm{~K} ; J$ in $\mathrm{Hz} ; \mathrm{TMS} \delta=0.00 \mathrm{ppm}$ )

| Compound | $\delta / \mathrm{ppm}$ |  |  |  |  |  |  | ${ }^{n} J\left(S n,{ }^{13} \mathrm{C}\right)^{\text {a }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ph or Bu |  |  |  | bipym |  |  | $n=1$ | $n=2$ | $n=3$ | $n=4$ |
|  | $\mathrm{C}_{1}$ | $\mathrm{C}_{2,6}$ | $\mathrm{C}_{3,5}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{4,6}$ | $\mathrm{C}_{5}$ |  |  |  |  |
| $\begin{aligned} & \mathrm{Ph}_{2} \mathrm{SnCl}_{2} \\ & {\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2} \text { hipym }{ }^{\text {c }}\right.} \\ & \text { bipym } \end{aligned}$ | 136.8 | 134.9 | 129.5 | 131.7 |  |  |  | $(785){ }^{\text {b }}$ | 62.8 | 85.4 | $17.5$ |
|  | $145.6{ }^{\text {d }}$ | 135.3 | 128.9 | 129.9 |  | $157.3{ }^{\text {d }}$ | $123.1{ }^{\text {d }}$ | e | 67.2 | 97.7 | 19.6 |
|  |  |  |  |  | 162.2 | 157.9 | 121.4 |  |  |  |  |
|  | $\mathrm{C}_{\alpha}$ | $\mathrm{C}_{\boldsymbol{B}}$ | $\mathrm{C}_{\gamma}$ | $\mathrm{C}_{8}$ |  |  |  |  |  |  |  |
| $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ 26.4 26.7 26.2 13.4 <br> $\left[\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right.$ bipym]     |  |  |  |  |  |  |  | 420.6 | 32.4 | 83.0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| sol. 1 | 34.8 | 27.5 | 25.9 | 13.4 | 159.7 | 158.2 | 122.6 | 693.4 | 40.1 | 132.8 |  |
| sol. 2 | 29.1 | 27.0 | 26.1 | 13.3 | 161.0 | 158.1 | 121.9 | 505.1 | 35.0 | 96.9 |  |
| sol. 3 | 28.3 | 26.9 | 26.1 | 13.3 | 161.6 | 157.9 | 121.6 | 485.3 | 34.8 | 93.7 |  |

${ }^{\text {a }}$ The value for the 119 isotope is reported, when ${ }^{19} \mathrm{Sn}$ and ${ }^{117} \mathrm{Sn}$ satellites are resolved. ${ }^{\mathrm{b}}$ From ref. $28 ;{ }^{\mathrm{c}} T=328 \mathrm{~K}$; ${ }^{\text {d }}$ broad to very broad resonance; ${ }^{\mathrm{c}}$ satellites undetectable.

TABLE $6 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ data in chloroform- $d_{1}$ solution ( $\mathrm{B}_{o}=4.7$ or $9.4 \mathrm{~T} ; T=298 \mathrm{~K} ; \mathrm{TMS} \delta=0.00 \mathrm{ppm}$ )


[^1]butyl complex. Crowe et al. [8] showed that longer $\mathrm{Sn}-\mathrm{N}$ bonds are associated with higher antitumour activity, and therefore the butyl derivative should be expected to be more active than the phenyl. Also the $\mathrm{Sn}-\mathrm{Cl}$ bonds are shorter in the phenyl complex (2.466(2) and $2.451(2) \AA$ ) than in the butyl complex (2.508(2) and $2.525(2) \AA$ ). The decrease in the bond lengths in the plane containing tin, the two chlorines and the two nitrogens in the phenyl species, can be ascribed to the electronegativity of the phenyl group which is higher than that of the butyl group. This decreases the s-character of the Sn - C bond so that the other bonds to tin have a higher s-character and are consequently shorter.

Comparable bond angles in the coordination sphere are $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$, which is $175.1(6)^{\circ}$ for the butyl derivative and $169.3(2)^{\circ}$ for the phenyl complex. The other two trans angles $\mathrm{Cl}-\mathrm{Sn}-\mathrm{N}, 161.5(3)$ and $158.8(2)^{\circ}$ are less than those for the phenyl derivative, 163.6(1) and $160.4(1)^{\circ}$. The $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angle is very different, $106.0(1)$ for the phenyl complex and $103.81(5)^{\circ}$ for the butyl complex. The bite angles $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ are more similar, 67.9(1) and 66.4(3) ${ }^{\circ}$, respectively.

There are nineteen complexes of the type " $\mathrm{SnCl}_{2} \mathrm{~N}_{2} \mathrm{C}_{2}$ " in the Cambridge Crystallographic Database [19] with $\mathrm{Sn}-\mathrm{N}$ bond lengths ranging from 2.27 to $2.58 \AA$, average $2.40 \AA$. The values in our complex coincide with this average value. The $\mathrm{Sn}-\mathrm{Cl}$ bond lengths are in the range $2.37-2.60 \AA$, and our values are shorter than average ( $2.52 \AA$ ). Finally, the $\mathrm{Sn}-\mathrm{C}$ bond length range is narrower, $2.05-2.22 \AA$, which is probably due to the low polarizability of this bond and our values are similar to the average value, $2.13 \AA$. The search revealed thirteen cis-complexes with bis (nitrogen) chelates and six trans complexes of monodentate nitrogen ligands.

There are twelve complexes with chelating nitrogen ligands that have a similar five-atom $\mathrm{Sn}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ ring skeleton. The $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ bite angle ranges from $66.1^{\circ}$, for dichloro(diethyl)[3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine]-tin(IV) [20] and dichloro(diethyl) [2-(2'-pyridyl)benzothiazolyl- $N, N^{\prime}$ ]tin(IV) [21] to 71.5 for ( $\mu_{2}$-methylene)-bipyridine(tetrachloro(dimethyl)di-
tin(IV)) [22]. These three complexes have the nitrogen ligands that are derivatives of bipyridine and are very similar to bipym with two aromatic rings linked through one single $\mathrm{C}-\mathrm{C}$ bond. Seven further complexes of this type were found. These complexes show an appreciable variation of $\mathrm{Sn}-\mathrm{N}$ bond lengths. The complexes may be classified in two groups on the basis of $\mathrm{Sn}-\mathrm{N}$ bond lengths.
(a) Short $\mathrm{Sn}-\mathrm{N}$ bonds are associated with large $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles, between 170 and $180^{\circ}$; this angle is also larger than the other two trans $\mathrm{N}-\mathrm{Sn}-\mathrm{Cl}$ angles;
(b) long $\mathrm{Sn}-\mathrm{N}$ bonds are associated with small C -$\mathrm{Sn}-\mathrm{C}$ angles.

This trend is also found for two complexes where the nitrogen ligand has an additional nitrogen atom available for coordination. Thus, in ( $2,2^{\prime}$-azopyridine$N, N^{\prime}, N^{\prime \prime}$ )dibromodimethyltin(IV) the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle is $162^{\circ}$ and the three $\mathrm{Sn}-\mathrm{N}$ bond lengths are $2.59,2.79$ and $2.90 \AA$ [23]; in dichloro(diethyl) 2 -(5-methyl-1,2,4-oxadiazol-3-yl)-1,10-phenanthroline]tin(IV) the values are $150^{\circ}, 2.86,2.95$, and $3.01 \AA$ [24], respectively. For these two complexes the $\mathrm{Sn}-\mathrm{N}$ bonds are longer than those in the thirteen complexes having bidentate nitrogen ligands.

The lengthening of the $\mathrm{Sn}-\mathrm{N}$ bond is also the driving force for the narrowing of the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle. In fact, the Sn - C bonds tend to occupy the area that is left free by the leaving group (the chelating nitrogen ligand). A limiting case for this trend would be the nitrogen ligand out of the coordination sphere and the remaining four groups, two halogen and two hydrocarbon groups, around the metal in a tetrahedral conformation.

Finally, in complexes of monodentate nitrogen ligands the trans $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles are nearly $180^{\circ}$ (range $178.1-180^{\circ}$ ). The thirteen chelate complexes have these values noticeably lower and generally two of the three trans bond angles are lower than $170^{\circ}$. The average of these three angles falls in the range $160-167^{\circ}$.
${ }^{119} \mathrm{Sn}$ Mössbauer I.S. values (Table 2) are typical of tin(IV) in inorganic and organometallic derivatives [25]. The Q.S. (Table 2) of $\left[\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$ is unambiguously indicative of an octahedral configuration of the tin atom with trans butyl groups [25]. The Q.S. in frozen ethanol solution confirms that the structure is retained. The value for $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$ also suggests an octahedral arrangement with a non-linear $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ skeleton. Using the Parish relationship between Q.S. and $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles [26], these angles have been estimated as $173^{\circ}$ and $163^{\circ}$ for the butyl derivative in the solid and the solution phase, respectively, and $151^{\circ}$ for the phenyl adduct.

The IR spectra of the adducts show the characteristic absorptions of the $2,2^{\prime}$-bipyrimidine skeleton [27] (see Experimental section). In particular the strong bands ( $1558,1547 \mathrm{~cm}^{-1}$ ) assigned to $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$ stretchings appear in the adducts split into three and four intense absorptions, pointing to the presence of mononuclear chelate complexes where only two of the four nitrogen atoms are coordinated. The $\nu(\mathrm{Sn}-\mathrm{C})_{\mathrm{as}, \mathrm{s}}$ have been assigned at 621 and $578 \mathrm{~cm}^{-1}$, respectively, for the butyl derivative; only the $\nu(\mathrm{Sn}-\mathrm{C})_{\text {as }}$ has been reliably assigned for the phenyl adduct as a component of the broad band centred at $278 \mathrm{~cm}^{-1}$. Two $\nu(\mathrm{Sn}-\mathrm{Cl})$ bands at $278 \mathrm{~cm}^{-1}, \nu_{\mathrm{as}}$, and $225 \mathrm{~cm}^{-1}, \nu_{\mathrm{s}}$, have been
assigned for the phenyl derivative, consistent with the non-linearity of the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ system. For the butyl derivative only $\nu(\mathrm{Sn}-\mathrm{Cl})_{\text {as }}$ has been observed in the range of frequencies examined.

The Mössbauer and IR data are entirely consistent with the crystal structures of $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$ discussed above and of $\left[\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right.$ bipym $]$ previously reported [1].

The ${ }^{13} \mathrm{C}$-NMR data for $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (Table 5) are in good agreement with literature data [28] and since we could not measure ${ }^{1} J\left({ }^{(19} \mathrm{Sn},{ }^{13} \mathrm{C}\right)$ it seemed reasonable to use the published value reported in Table 5 to calculate $\theta$ in solution. The Lockhart equation [16] (eqn. (1)):
${ }^{1} J=11.4 \theta-875$
yields a value of $146^{\circ}$, corresponding to a geometry around the tin which may be classed either as highly distorted tetrahedral or octahedral [29]. This finding is consistent with the solid state value of $\theta 125.5^{\circ}$, which we interpret as an increased amount of $p$ character in the orbitals involved in the $\mathrm{Sn}-\mathrm{Cl}$ bonds [30,31].

The ${ }^{13} \mathrm{C}$ spectrum of the $1: 1$ bipym complex exhibits both broad and sharp lines. The broad lines (phenyl $\mathrm{C}_{4}$ and bipym carbon atoms) sharpen progressively if the temperature is raised, though the bipym $\mathrm{C}_{2}$ resonance, the intensity of which is reduced because of the long relaxation time, is still broadened beyond detection at 328 K and the phenyl $\mathrm{C}_{1}$ is a barely detectable fairly broad peak. The coupling constants show the commonly observed trend [32] with ${ }^{3} J>{ }^{2} J>{ }^{4} J$.

The ${ }^{1} \mathrm{H}$ spectrum of the complex (Table 6) exhibits a similar pattern of broad (protons on $\mathrm{C}_{4}$ and $\mathrm{C}_{6}$ of bipym, and on $\mathrm{C}_{2}$ and $\mathrm{C}_{6}$ of the phenyis) and sharp (protons on $\mathrm{C}_{5}$ of bipym and on $\mathrm{C}_{3}$ and on $\mathrm{C}_{5}$ of phenyls) lines. The protons on $\mathrm{C}_{4}$ of the phenyls seem to generate a broad resonance obscured by the multiplet centred at 7.4 ppm (relative integrated intensity corresponding to 6 protons). The broad resonance at 8.0 ppm has tin satellites with ${ }^{3} J\left(\mathrm{Sn},{ }^{1} \mathrm{H}\right) c a .92 \mathrm{~Hz}$, in the expected range for the obviously cis geometry [33,34]. The anomalous feature of broad and sharp lines present in the same spectrum has not been explained.

The ${ }^{13} \mathrm{C}$-NMR parameters for $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ (Table 5) reproduce the literature data [35] and the value of the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle calculated from ${ }^{1} \mathrm{~J}\left({ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)$ using the Holeček equation [18] (eqn. (2))
${ }^{1} J=(9.99 \pm 0.73) \theta-(746 \pm 100)$
is ( $117 \pm 20)^{\circ}$, whereas eqn. (1) yields $114^{\circ}$. X-ray diffraction data on the crystal show a distorted octahedral geometry around tin, with two bridging halogen atoms ( $\theta$ is $132^{\circ}$ ) [36]. The lesser $\theta$ value in solution
may be explained by medium effects, involving breaking of the halogen bridges and formation of pentacoordinate species with equatorial alkyl groups [16,37]. Comparable deviations have frequently been reported [16,18,29,38].

The ${ }^{1} \mathrm{H}$-NMR data of $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ are reported in Table 6: the ${ }^{2} J(\mathrm{Sn}, \mathrm{H})$ values cannot be extracted simply from the spectrum because of the complexity of the methylene multiplets.

The ${ }^{13} \mathrm{C}$ spectrum of $\left[\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right.$ bipym] shows a marked concentration dependence (Table 5): the concentrations were not known, but solutions 2 and 3 were obtained from 1 by progressive dilution. In the more concentrated solution, $\theta$ calculated according to eqn. (1) $\left(138^{\circ}\right)$ or (2) $(145 \pm 21)^{\circ}$ suggests a skew structure (i.e. distorted octahedral or trapezoidal bipyramidal) [29]. The discrepancy with $\theta$ obtained by ${ }^{119} \mathrm{Sn}$ Mössbauer spectroscopy in frozen ethanol solution ( $163^{\circ}$, Table 2) is within acceptable limits given the approximations involved; this is not true of the solid state data.

Comparable behaviour has been observed for the similar complex dibromobis(pyrazole)dimethyltin(IV), which in chloroform solution undergoes a partial dissociation to the mono(pyrazole) complex with trigonal bipyramidal structure, reverting to the octahedral stereochemistry if excess of pyrazole is present [39].

From our NMR data for the butyl complex and the previous structural studies, we conclude that the nitrogen ligand is labile and hence that the mechanism of interaction of organotin complexes in biological systems differs from that of platinum complexes which retain the $\mathrm{Pt}-\mathrm{N}$ bonds when reacting with DNA. In organotin compounds the $\mathrm{Sn}-\mathrm{N}$ bonds are probably cleaved before the tin reaches its ultimate target.

## 4. Supplementary material

Listing of $F_{\mathrm{o}} / F_{\mathrm{c}}$ parameters; full listing of bond distances and angles; anisotropic and isotropic displacement parameters; hydrogen coordinates. All except the first are available from the Cambridge Crystallographic Data Centre.

## Acknowledgments

Thanks are due to Miriam Rossi, Vassar College, Poughkeepsie, NY, USA for helpful discussion. The Computer Center at Vassar College provided computer facilities and assistance (Bill Wine). The Institute for Cancer Research at Fox Chase, Philadelphia, USA, provided the Cambridge Data Base facility (Jenny P. Glusker). The NMR and Microanalysis Services of the CNR Research Area of Montelibretti, Roma, Italy
recorded some of the NMR spectra and performed the elemental analyses (Luca Petrilli and Franco Dianetti). Prof. M. Paci allowed use of the AM400 Bruker spectrometer.

Financial support by MURST (40\% and 60\% Research Projects) and CNR (research contribution no. 91.03215. CT03) is gratefully acknowledged.

## References

1 A.G. Sykes, Plat. Met. Rev., 32 (1988) 170.
2 K.R. Harrap, Cancer Treatment Rev., 12 (1985) 21.
3 V. Narayanan, M. Nasr and K.D. Paull, in M. Gielen (ed.), Tin-based Antitumour Drugs, Springer-Verlag, Berlin, 1990, pp. 201-216.
4 P.J. Sadler, Chem. Brit., 18 (1982) 182.
5 A.J. Crowe and P.J. Smith, Chem. Ind., 200 (1980); A.J. Crowe, P.J. Smith and G. Atassi, Chem. Biol. Interact., 32 (1980) 171.

6 A.J. Crowe and P.J. Smith, J. Organomet. Chem., 224 (1982) 223.
7 A.J. Crowe, P.J. Smith and G. Atassi, Inorg. Chim. Acta, 93 (1984) 179.

8 A.J. Crowe, P.J. Smith, C.J. Cardin, H.E. Parge and F.E. Smith, Cancer Lett., 24 (1984) 45.
9 F. Caruso, M. Bol-Schoenmakers and A.H. Penninks, J. Med. Chem., 36 (1993) 1168.
10 I. Haiduc and C. Silvestru, Organometallics in Cancer Chemotherapy, Vol. 2, CRC Press, Boca Raton, 1990, pp. 218-220, and references therein.
11 J. Costamagna, J. Canales, J. Vargas, M. Camalli, F. Caruso and E. Rivarola, Pure Appl. Chem., 65 (1993) 1521.

12 P.S. Braterman, J.I. Song, S. Kohlmann, C. Vogler and W. Kaim, J. Organomet. Chem., 411 (1991) 207 and refs. therein.

13 E. Rivarola, A. Silvestri and R. Barbieri, Inorg. Chim. Acta, 28 (1978) 223.

14 D.J. Cruickshank, in J. Rollet (ed.), Computing Methods in Crystallography, Pergamon Press, Oxford, 1965, pp. 112-116.
15 S. Cerrini and R. Spagna, caos Program, 4th European Crystallographic Meeting, Oxford, 1977, p. 7.
16 T.P. Lockhart, W.F. Manders and J.J. Zuckerman, J. Am. Chem. Soc., 107 (1985) 4546.
17 T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.

18 J. Holeček and A. Lyčka, Inorg. Chim. Acta, 118 (1986) L15.
19 F.H. Allen, S.A. Bellard, M.D. Brice, B.A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B.G. Hummelink-Peters, O. Kennard, W.D.S. Motherwell, J.R. Rogers and D.G. Watson, Acta Crystallogr., B35 (1979) 2331.
20 L. Prasad, Y. Le Page and F.E. Smith, Inorg. Chim. Acta, 68 (1983) 45.

21 H. Sheng-Zhi, S. Da-Shuang, H. Tai-Shan, W. Jia-Zhu, H. ZeXing, Y. Jin-Long and X. Cheng-Hui, J. Struct. Chem., 9 (1990) 264.

22 M. Austin, K. Gebreyes, H.G. Kuivila, K. Swami and J.A. Zubieta, Organometallics, 6 (1987) 824.
23 M. Camalli, F. Caruso, G. Mattogno and E. Rivarola, Inorg. Chim. Acta, 170 (1990) 225.
24 L. Prasad, Y. Le Page and F.E. Smith, Acta Crystallogr., B38 (1982) 2890.

25 G.M. Bancroft and R.H. Platt, Adv. Inorg. Chem. Radiochem., 15 (1972) pp. 103 and 150.

26 R.V. Parish, Structure and bonding in tin compounds, in G.J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, Plenum Press, New York, 1984, pp. 528 and 544.
27 A.R. Katritzky and P.J. Taylor, Physical Methods in Heterocyclic Chemistry, 4 (1971) 325.
28 T.N. Mitchell, J. Organomet. Chem., 59 (1973) 189.
29 W.F. Howard, Jr., R.W. Crecely and W.H. Nelson, Inorg. Chem., 24 (1985) 2206.
30 P.T. Greene and R.F. Bryan, J. Chem. Soc. A, (1971) 2549.
31 N.W. Alcock and J.F. Sawyer, J. Chem. Soc., Dalton Trans., (1977) 1090.

32 M. Bullpitt, W. Kitching, W. Adcock and D. Doddrell, J. Organomet. Chem., 116 (1976) 161.
33 B. Wrackmeyer, Annu. Repts. NMR Spectry., 16 (1985) 73.
34 V.S. Petrosyan, in J.W. Emsley, J. Feeney and L.H. Sutcliffe (eds.), Progress in NMR spectroscopy, Vol. 11, Pergamon Press, Oxford, 1977, p. 115.
35 J. Holeček, M. Nádvornik, K. Handlír and A. Lyčka, J. Organomet. Chem., 315 (1986) 299.
36 J.F. Sawyer, Acta Crystallogr., C44 (1988) 633.
37 M. Camalli and F. Caruso, Inorg. Chim. Acta, 169 (1990) 189.
38 T.K. Sham, and G.M. Bancroft, Inorg. Chem., 14 (1975) 2281.
39 B. Alberte, A. Sánchez Gonzáles, E. García, J.S. Casas, J. Sordo and E.E. Castellano, J. Organomet. Chem, 338 (1988) 187.


[^0]:    Correspondence to: Professor E. Rivarola.

[^1]:    ${ }^{\text {a }}$ broad to very broad; ${ }^{\text {b }}$ see text; ${ }^{\text {c }}$ overlapping multiplets.

